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ABSTRACT
In this paper, we define the binomial transform of the generalized Guglielmo se-
quence and as special cases, the binomial transform of the triangular, Lucas-
triangular, oblong, and pentagonal sequences will be introduced. We investigate
their properties in detail. We present Binet’s formulas, generating functions, Sim-
son formulas, and the summation formulas for these binomial transforms. Moreover,
we give some identities such as Catalan’s identity, Cassani’s identity, and matrices
related to these binomial transforms.
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Introduction
In this paper, we introduce the binomial transform of the generalized Guglielmo

sequence and we investigate, in detail, four special cases named the binomial transform
of the triangular, Lucas-triangular, oblong and pentagonal sequences. We investigate
their properties in the next sections. In this section, we present some properties of the
generalized Guglielmo sequence that studied by Soykan [0.2].

A generalized Guglielmo sequence {Wn}n≥0 = {Wn(W0,W1,W2)}n≥0 is given by
the third-order recurrence relations.

Wn = 3Wn−1 − 3Wn−2 +Wn−3 (0.1)

with the initial values W0 = c0,W1 = c1,W2 = c2 not all being zero.
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 3W−(n−1) − 3W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (0.1) holds for all integer n.
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Now we present four special cases of the sequence {Wn}. Triangular sequence
{Tn}n≥0,triangular-Lucas sequence {Hn}n≥0, oblong sequence {On}n≥0 and pentago-
nal sequence {pn}n≥0 are defined, respectively, by the third-order recurrence relations

Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3, (0.2)

Hn = 3Hn−1 − 3Hn−2 +Hn−3, H0 = 3, H1 = 3, H2 = 3, (0.3)

On = 3On−1 − 3On−2 +On−3, O0 = 0, O1 = 2, O2 = 6, (0.4)

pn = 3pn−1 − 3pn−2 + pn−3, p0 = 0, p1 = 1, p2 = 5. (0.5)

The sequences {Tn}n≥0, {Hn}n≥0, {On}n≥0 and {pn}n≥0 can be extended to neg-
ative subscripts by defining

T−n = 3T−(n−1) − 3T−(n−2) + T−(n−3),

H−n = 3H−(n−1) − 3H−(n−2) +H−(n−3),

O−n = 3O−(n−1) − 3O−(n−2) +O−(n−3),

p−n = 3p−(n−1) − 3p−(n−2) + p−(n−3),

for n = 1, 2, 3, ... respectively. Therefore, recurrences (0.2)-(0.5) hold for all integer n.
Now, we give some properties related to generalized Guglielmo numbers that we need
for the rest of the study.

• The Binet formula of generalized Guglielmo numbers. Binet formula of general-
ized Guglielmo numbers can be given as

Wn = A1 +A2n+A3n
2 (0.6)

where

A1 = W0,

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0),

i.e.,

Wn = W0 +
1

2
(−W2 + 4W1 − 3W0)n+

1

2
(W2 − 2W1 +W0)n

2. (0.7)

• For all integers n, triangular, triangular-Lucas, oblong and pentagonal numbers
(using initial conditions in (0.7)) can be expressed using Binet’s formulas as

Tn =
n(n+ 1)

2
,

Hn = 3,

On = n(n+ 1),

pn =
1

2
n (3n− 1) ,

respectively.
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• Suppose that fWn
(x) =

∞∑
n=0

Wnx
n is the ordinary generating function of the

generalized Guglielmo sequence {Wn}n≥0. Then,
∞∑
n=0

Wnx
n is given by

∞∑
n=0

Wnx
n =

W0 + (W1 − 3W0)x+ (W2 − 3W1 + 3W0)x
2

1− 3x+ 3x2 − x3
. (0.8)

• Here, the characteristic equation of the Generalized Guglielmo sequence

x3 − 3x2 + 3x− 1 = 0.

• (Simpson’s formula for generalized Guglielmo numbers)For all integers n, we
have

∣∣∣∣∣∣
Wn+2 Wn+1 Wn

Wn+1 Wn Wn−1

Wn Wn−1 Wn−2

∣∣∣∣∣∣
= −(W2 − 2W1 +W0)

3.

For more detail, see [0.2].
Binomial Transform of the Generalized Guglielmo Se-
quence

In [0.2, p. 137], Knuth defined the idea of the binomial transform. Given a sequence
of numbers (an), its binomial transform (ân) defined as follows

ân =

n∑
i=0

(
n

i

)
ai, with inversion an =

n∑
i=0

(
n

i

)
(−1)n−iâi,

or, in the symmetric version

ân =

n∑
i=0

(
n

i

)
(−1)i+1ai, with inversion an =

n∑
i=0

(
n

i

)
(−1)i+1âi.

For more information on binomial transform, see, [0.2,0.2,0.2,0.2].
In this section, we define the binomial transform of the generalized Guglielmo

sequence Wn and as special cases the binomial transform of the triangular, Lucas-
triangular, oblong and pentagonal sequences.

Definition 0.1. The binomial transform of the generalized Guglielmo sequence Wn is
defined by

bn = Ŵn =

n∑
i=0

(
n

i

)
Wi.

3
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The some terms of bn may be given as

b0 =

0∑
i=0

(
0

i

)
Wi = W0,

b1 =

1∑
i=0

(
1

i

)
Wi = W0 +W1,

b2 =

2∑
i=0

(
2

i

)
Wi = W0 + 2W1 +W2.

If we translate the bn to matrix form that includes lower-triangular matrix, we get




b0
b1
b2
b3
b4
...




=




1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 2 1 0 0 · · ·
1 3 3 1 0 · · ·
1 4 6 4 1 · · ·
...

...
...

...
...

. . .







W0

W1

W2

W3

W4
...




.

As special cases of bn = Ŵn, the binomial transforms of the triangular, Lucas-
triangular, oblong and pentagonal sequences are defined as follows: The binomial
transform of the triangular sequence Tn is

T̂n =

n∑
i=0

(
n

i

)
Ti,

the binomial transform of the Lucas-triangular sequence Hn is

Ĥn =

n∑
i=0

(
n

i

)
Hi,

the binomial transform of the oblong sequence On is

Ôn =

n∑
i=0

(
n

i

)
Oi,

the binomial transform of the pentagonal sequence pn is

p̂n =

n∑
i=0

(
n

i

)
pi.

Lemma 0.1.1. For n ≥ 0, the binomial transform of the generalized Guglielmo se-
quence Wn satisfies the following relation:

bn+1 =

n∑
i=0

(
n

i

)
(Wi +Wi+1).

4
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Proof. We use the following well-known identity:

(
n+ 1

i

)
=

(
n

i

)
+

(
n

i− 1

)
.

Note also that

(
n+ 1

0

)
=

(
n

0

)
= 1 and

(
n

n+ 1

)
= 0.

Then

bn+1 = W0 +

n+1∑
i=1

(
n+ 1

i

)
Wi

= W0 +

n+1∑
i=1

(
n

i

)
Wi +

n+1∑
i=1

(
n

i− 1

)
Wi

= W0 +

n∑
i=1

(
n

i

)
Wi +

n∑
i=0

(
n

i

)
Wi+1

=

n∑
i=0

(
n

i

)
Wi +

n∑
i=0

(
n

i

)
Wi+1

=

n∑
i=0

(
n

i

)
(Wi +Wi+1).

This completes the proof. �

Remark 0.2. From the last Lemma, we see that

bn+1 = bn +

n∑
i=0

(
n

i

)
Wi+1.

The following theorem gives recurrent relations of the binomial transform of the
generalized Tribonacci sequence.

Theorem 0.3. For n ≥ 0, the binomial transform of the generalized Guglielmo se-
quence Wn satisfies the following recurrence relation:

bn+3 = 6bn+2 − 12bn+1 + 8bn. (0.9)

Proof. To show (0.9), writing

bn+3 = r1 × bn+2 + r2 × bn+1 + r3 × bn

5
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and taking the values n = 0, 1, 2 and then solving the system of equations

b3 = r1 × b2 + r2 × b1 + r3 × b0,

b4 = r1 × b3 + r2 × b2 + r3 × b1,

b5 = r1 × b4 + r2 × b3 + r3 × b2.

Hence, we find that r3 = 6, r3 = −12, r3 = 8. �
The sequence {bn}n≥0 can be extended to negative subscripts by defining

b−n =
3

2
b−n+1 −

3

4
b−n+2 +

1

8
b−n+3

for n = 1, 2, 3, .... Therefore, recurrence (0.9) holds for all integer n.
Note that the recurrence relation (0.9) is independent from initial values. So,

T̂n+3 = 6T̂n+2 − 12T̂n+1 + 8T̂n,

Ĥn+3 = 6Ĥn+2 − 12Ĥn+1 + 8Ĥn,

Ôn+3 = 6Ôn+2 − 12Ôn+1 + 8Ôn,

p̂n+3 = 6p̂n+2 − 12p̂n+1 + 8p̂n.

The first few terms of the binomial transform of the generalized Guglielmo sequence
with positive subscript and negative subscript are given in the following Table 1.

Table 1. A few terms of binomial transform of the generalized Guglielmo sequence.
n bn b−n

0 W0

1 W0 +W1
7
8W0 − 1

2W1 +
1
8W2

2 W0 + 2W1 +W2
11
16W0 − 5

8W1 +
3
16W2

3 2W0 + 6W2
1
2W0 − 9

16W1 +
3
16W2

4 8W0 − 16W1 + 24W2
11
32W0 − 7

16W1 +
5
32W2

5 32W0 − 80W1 + 80W2
29
128W0 − 5

16W1 +
15
128W2

6 112W0 − 288W1 + 240W2
37
256W0 − 27

128W1 +
21
256W2

7 352W0 − 896W1 + 672W2
23
256W0 − 35

256W1 +
7

128W2

8 1024W0 − 2560W1 + 1792W2
7

128W0 − 11
128W1 +

9
256W2

9 2816W0 − 6912W1 + 4608W2
67

2048W0 − 27
512W1 +

45
2048W2

10 7424W0 − 17 920W1 + 11 520W2
79

4096W0 − 65
2048W1 +

55
4096W2

11 18 944W0 − 45 056W1 + 28 160W2
23

2048W0 − 77
4096W1 +

33
4096W2

12 47 104W0 − 110 592W1 + 67 584W2
53

8192W0 − 45
4096W1 +

39
8192W2

13 114 688W0 − 266 240W1 + 159 744W2
121

32 768W0 − 13
2048W1 +

91
32 768W2

The first few terms of the binomial transform numbers of triangulas, Lucas-
triangular, oblong and pentegonal sequences with positive subscript and negative sub-
script are given in the following Table 2.

Table 2. A few terms of four special cases of binomial transform of generalized
Guglielmo numbers.

6
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n 0 1 2 3 4 5 6 7 8 9 10 11

T̂n 0 1 5 18 56 160 432 1120 2816 6912 16640 39424

T̂−n −1
8 − 1

16 0 1
32

5
128

9
256

7
256

5
256

27
2048

35
4096

11
2048

Ĥn 3 6 12 24 48 96 192 384 768 1536 3072 6144

Ĥ−n
3
2

3
4

3
8

3
16

3
32

3
64

3
128

3
256

3
512

3
1024

3
2048

Ôn 0 2 10 36 112 320 864 2240 5632 13824 33280 78848

Ô−n −1
4 −1

8 0 1
16

5
64

9
128

7
128

5
128

27
1024

35
2048

11
1024

p̂n 0 1 7 30 104 320 912 2464 6400 16128 39680 95744
p̂−n

1
8

5
16

3
8

11
32

35
128

51
256

35
256

23
256

117
2048

145
4096

11
512

Now, we define the Binet’s formula of the binomal transform of the generalized
Guglielmo sequence.

Theorem 0.4. For any integer n the Binet’s formula of the binomial transform of
the generalized Guglielmo sequence is given as

bn = Ŵn = (A1 +A2
n

2
+A3

n(n+ 1)

4
)2n (0.10)

where

A1 = W0,

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0).

Proof. For the proof, we use the following identities.

n∑
i=0

(
n

i

)
= 2n,

n∑
i=0

(
n

i

)
i = 2n−1n,

n∑
i=0

(
n

i

)
i2 = 2n−2n(n+ 1).

Using (0.6), we can write the bn as

bn =

n∑
i=0

(
n

i

)
Wi

=

n∑
i=0

(
n

i

)
(A1 +A2i+A3i

2)

= A1

n∑
i=0

(
n

i

)
+A2

n∑
i=0

(
n

i

)
i+A3

n∑
i=0

(
n

i

)
i2.

7
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Consequently, the proof can be done. �
For all integers n, using Theorem 0.4, Binet’s formulas of binomial transforms of the

triangular, Lucas-triangular, oblong and pentagonal numbers are given in the following
corollary, respectively.

Corollary 0.5. The Binet’s formula of binomial transforms of the triangular, Lucas-
triangular, oblong, and pentagonal numbers are given as follows.

(a) T̂n = n (n+ 3)× 2n−3.

(b) Ĥn = 3× 2n.

(c) Ôn = n (n+ 3)× 2n−2.
(d) p̂n = n (3n+ 1)× 2n−3.

Obtaining Binet Formula of Binomial Transform of Gen-
eralized Guglielmo Sequence From Generating Function

The generating function of the binomial transform of the generalized Guglielmo
sequence Wn is a power series centered at the origin whose coefficients are the binomial
transform of the generalized Guglielmo sequence.

Next, we give the ordinary generating function fbn(x) =
∞∑
n=0

bnx
n of the sequence

bn.

Theorem 0.6. Suppose that fbn(x) =
∞∑
n=0

bnx
n is the ordinary generating function of

the binomial transform of the generalized Guglielmo sequence {Wn}n≥0. Then, fbn(x)
is given by

fbn(x) =
b0 + (b1 − 6b0)x+ (b2 − 6b1 + 12b0)x

2

1− 6x+ 12x2 − 8x3
. (0.11)

Proof. Using the definition of the binomial transform of the generalized Guglielmo
sequence, we obtain

(1− 6x+ 12x2 − 8x3)fbn(x) =

∞∑
n=0

bnx
n − 6x

∞∑
n=0

bnx
n + 12x2

∞∑
n=0

bnx
n − 8x3

∞∑
n=0

bnx
n

=

∞∑
n=0

bnx
n − 6

∞∑
n=0

bnx
n+1 + 12

∞∑
n=0

bnx
n+2 − 8

∞∑
n=0

bnx
n+3

=

∞∑
n=0

bnx
n − 6

∞∑
n=1

bn−1x
n + 12

∞∑
n=2

bn−2x
n − 8

∞∑
n=3

bn−3x
n

= b0 + b1x
1 + b2x

2 − 6b0x
1 − 6b1x

2 + 12b0x
2

= +

∞∑
n=3

(bn − 6bn−1 + 12bn−2 − 8bn−3)x
n

= b0 + (b1 − 6b0)x+ (b2 − 6b1 + 12b0)x
2.

Then rearranging the above equation, we get (0.11). �
If we take,

8
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b0 = W0,

b1 = W0 +W1,

b2 = W0 + 2W1 +W2.

(0.11) is written as

fbn(x) =
W0 + (W1 − 5W0)x+ (7W0 − 4W1 +W2)x

2

1− 6x+ 12x2 − 8x3

Proposition 1. P. Barry shows in [0.2] that if A(x) is the generating function of the
sequence {an}, then

S(x) =
1

1− x
A(

x

1− x
)

is the generating function of the sequence {bn} with bn =
n∑

i=0

(
n
i

)
ai.

Note that, in our case, using Proposition 1 and (0.8), we get

S(x) =
1

1− x

W0 + (W1 − 3W0)(
x

1−x) + (W2 − 3W1 + 3W0)(
x

1−x)
2

1− 3( x
1−x) + 3( x

1−x)
2 − ( x

1−x)
3

=
W0 + (W1 − 5W0)x+ (7W0 − 4W1 +W2)x

2

1− 6x+ 12x2 − 8x3
.

From Theorem 0.6, we get the following corollary.

Corollary 0.7. Generating functions of the binomial transform of the triangular,
Lucas-triangular, oblong and pentagonal numbers are

∞∑
n=0

T̂nx
n =

x− x2

1− 6x+ 12x2 − 8x3
,

∞∑
n=0

Ĥnx
n =

3− 12x+ 12x2

1− 6x+ 12x2 − 8x3
,

∞∑
n=0

Ônx
n =

2x− 2x2

1− 6x+ 12x2 − 8x3
,

∞∑
n=0

p̂nx
n =

x+ x2

1− 6x+ 12x2 − 8x3
,

respectively.

We next find Binet’s formula of the Binomial transform of the generalized Guglielmo
numbers {Wn} by the use of generating function for bn.

9



10	 International Journal of Mathematics, Statistics and Operations ResearchAsian Journal of Statistics and Applications SZULGA, Jerzy

Proposition 2. (Examples of generating functions for simple sequence [0.2])The fol-
lowing equality is true

∞∑
n=0

αn

(
n+ k

k

)
xn =

1

(1− αx)k+1
.

Next, we obtain the Binet’s formula, given in Theorem 0.4, by the generating func-
tion of the binomial transform of the generalized Guglielmo sequence.

Theorem 0.8. Binet’s formula of the Binomial transform of the generalized
Guglielmo numbers are

bn = bn = (A1 +A2
n

2
+A3

n(n+ 1)

4
)2n (0.12)

where

A1 = W0,

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0).

Proof. Using (0.11), we get the following identity

∞∑
n=0

bnx
n =

b0 + (b1 − 6b0)x+ (b2 − 6b1 + 12b0)x
2

1− 6x+ 12x2 − 8x3

=
d1

(1− 2x)
+

d2
(1− 2x)2

+
d3

(1− 2x)3
.

Then, we get

b0 = −d2 − d3 − d1,

b1 − 6b0 = 4d1 + 2d2,

b2 − 6b1 + 12b0 = −4d1.

Hence, solving the above system of equations and using Proposition 2, we get

∞∑
n=0

bnx
n =

1
4 (12b0 − 6b1 + b2)

(1− 2x)
+

−1
2 (6b0 − 5b1 + b2)

(1− 2x)2
+

1
4 (4b0 − 4b1 + b2)

(1− 2x)3

=

∞∑
n=0

(
1

4
(12b0 − 6b1 + b2) 2

n − 1

2
(6b0 − 5b1 + b2) (n+ 1)2n +

=
1

8
(4b0 − 4b1 + b2) (n

2 + 3n+ 2)2n)xn.

10
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Thus, we get

bn = (
1

4
(12b0 − 6b1 + b2) 2

n−1

2
(6b0 − 5b1 + b2) (n+1)2n+

1

8
(4b0 − 4b1 + b2) (n

2+3n+2)2n).

Consequently, If we take b0 = W0, b1 = W0 +W1 and b2 = W0 + 2W1 +W2 we get
the following identity

bn = (A1 +A2
n

2
+A3

n(n+ 1)

4
)2n

where A1, A2 and A3 are stated in the theorem. �
Simson’s Formulas

It’s well known that many authors studied the Simpson Formulas for different se-
quences. Similarly, in this section, we introduce the Simson formula for binomial trans-
forms of generalized Guglielmo numbers.

Theorem 0.9. For all integers n, Simson formula of binomial transforms of gener-
alized Guglielmo numbers are given as

∣∣∣∣∣∣
bn+2 bn+1 bn
bn+1 bn bn−1

bn bn−1 bn−2

∣∣∣∣∣∣
= 8n

∣∣∣∣∣∣
b2 b1 b0
b1 b0 b−1

b0 b−1 b−2

∣∣∣∣∣∣
. (0.13)

Proof. For the proof, we use the mathematical induction on n. First, we assume
that n ≥ 0. If we take n = 0, it’s easily seen that (0.13) is hold. Let (0.13) is true for
n = k so we can write the following identity.

∣∣∣∣∣∣
bk+2 bk+1 bk
bk+1 bk bk−1

bk bk−1 bk−2

∣∣∣∣∣∣
= 8k

∣∣∣∣∣∣
b2 b1 b0
b1 b0 b−1

b0 b−1 b−2

∣∣∣∣∣∣
.

Then, we will show that (0.13) is true for n = k + 1.

∣∣∣∣∣∣
bk+3 bk+2 bk+1

bk+2 bk+1 bk
bk+1 bk bk−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
6bk+2 − 12bk+1 + 8bk bk+2 bk+1

6bk+1 − 12bk + 8bk−1 bk+1 bk
6bk − 12bk−1 + 8bk−2 bk bk−1

∣∣∣∣∣∣

= 6

∣∣∣∣∣∣
bk+2 bk+2 bk+1

bk+1 bk+1 bk
bk bk bk−1

∣∣∣∣∣∣
− 12

∣∣∣∣∣∣
bk+1 bk+2 bk+1

bk bk+1 bk
bk−1 bk bk−1

∣∣∣∣∣∣

+8

∣∣∣∣∣∣
bk bk+2 bk+1

bk−1 bk+1 bk
bk−2 bk bk−1

∣∣∣∣∣∣

= 8k+1

∣∣∣∣∣∣
b2 b1 b0
b1 b0 b−1

b0 b−1 b−2

∣∣∣∣∣∣
.
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Note that, for the case n < 0 the proof can be done similarly. Thus, the proof is
completed. �

The previous theorem gives the following corollary.

Corollary 0.10. For all integers n, the following identities are true.

(a)

∣∣∣∣∣∣
T̂n+2 T̂n+1 T̂n

T̂n+1 T̂n T̂n−1

T̂n T̂n−1 T̂n−2

∣∣∣∣∣∣
= −23n−6.

(b)

∣∣∣∣∣∣
Ĥn+2 Ĥn+1 Ĥn

Ĥn+1 Ĥn Ĥn−1

Ĥn Ĥn−1 Ĥn−2

∣∣∣∣∣∣
= 0.

(c)

∣∣∣∣∣∣
Ôn+2 Ôn+1 Ôn

Ôn+1 Ôn Ôn−1

Ôn Ôn−1 Ôn−2

∣∣∣∣∣∣
= −23n−3.

(d)

∣∣∣∣∣∣
p̂n+2 p̂n+1 p̂n
p̂n+1 p̂n p̂n−1

p̂n p̂n−1 p̂n−2

∣∣∣∣∣∣
= −27× 23n−6.

Some Identites
We now present a few special identities for the binomial transforms of generalized

Guglielmo numbers. The following Theorem presents the Catalan’s identity for the
binomial transforms of generalized Guglielmo numbers.

Theorem 0.11. (Catalan’s identity) For all integers n and m, the following identity
holds.

bn+mbn−m−b2n = −22n−4m2(−m2A2
3+2n2A2

3+4nA2A3+2nA2
3+4A2

2+4A2A3+A2
3−8A1A3).

Proof. The proof has been seen easily using (0.10).
As special cases of the above theorem, we give Catalan’s identity of the binomial

transforms of generalized Guglielmo numbers. Firstly, we present Catalan’s identity of
the binomial transforms of triangular numbers.

Corollary 0.12. (Catalan’s identity of the binomial transforms of triangular num-
bers) For all integers n and m, the following identity holds.

T̂n+mT̂n−m − T̂ 2
n = 22n−6m2

(
−6n+m2 − 2n2 − 9

)
.

Proof. Taking bn = T̂n in Theorem 0.11 we get the required result. �
Next, we present the Catalan’s identity for the binomial transforms of generalized

Lucas-triangular numbers.

Corollary 0.13. (Catalan’s identity for the binomial transforms of Lucas-triangular
numbers) For all integers n and m, the following identity holds.

Ĥn+mĤn−m − Ĥ2
n = 0.

Proof. Taking bn = Ĥn in Theorem 0.11 we get the required result. �

12
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Next, we present the Catalan’s identity for the binomial transforms of generalized
oblong numbers.

Corollary 0.14. (Catalan’s identity for the binomial transforms of oblong numbers)
For all integers n and m, the following identity holds.

Ôn+mÔn−m − Ô2
n = 22n−4m2

(
−6n+m2 − 2n2 − 9

)
.

Proof. Taking bn = Ôn in Theorem 0.11 we get the required result. �
Next, we present the Catalan’s identity for the binomial transforms of generalized

pentagonal numbers.

Corollary 0.15. (Catalan’s identity for the binomial transforms of pentagonal num-
bers) For all integers n and m, the following identity holds.

p̂n+mp̂n−m − p̂2n = 22n−6m2
(
−6n+ 9m2 − 18n2 − 1

)

Proof. Taking bn = p̂n in Theorem 0.11 we get the required result. �
Note that for m = 1 in Catalan’s identity, we get Cassini’s identity for the binomial

transforms of generalized Guglielmo number. Hence, we present the corollary given
below.

Corollary 0.16. Cassini’s identity for the binomial transforms of the triangular,
Lucas-triangular, oblong and pentagonal numbers, respectively, are given below.

(a) T̂n−1T̂n+1 − T̂ 2n = −22n−6
(
2n2 + 6n+ 8

)
.

(b) Ĥn+mĤn−m − Ĥ2
n = 0.

(c) Ôn−1Ôn+1 − Ô2n = −22n−4
(
2n2 + 6n+ 8

)
.

(d) p̂n−1p̂n+1 − p̂2n = −22n−6
(
18n2 + 6n− 8

)
.

Sum Formulas
In this section, in the first instance, we give some properties that we need rest of

this section and then we present some sum formulas related to binomial transform of
generalized Guglielmo numbers.

0.1. Sums of Terms with Positive Subscripts

The following proposition can be obtained easily.

Proposition 3. The following identities are true.

(a)
n∑

k=0

k2k = 2n+1 (n− 1) + 2.

(b)
n∑

k=0

k22k = 2n+1
(
n2 − 2n+ 3

)
− 6.

(c)
n∑

k=0

−k2−k = 2−nn+ 2−n+1 −2.

(d)
n∑

k=0

k22−k = 6− 2−n
(
n2 + 4n+ 6

)
.

13
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Theorem 0.17. For n ≥ 0, the following sum formulas are holds where A1, A2 and
A3 stated in the Theorem 0.8.

(a)
n∑

k=0

bk = A2 −A1 −A3 +
1
42

n+1
(
4A1 − 2A2 + 2A3 + 2nA2 − nA3 + n2A3

)
.

(b)
n∑

k=0

b2k = − 1
27(9A1−12A2+14A3)+

1
542

2n+2
(
18A1 − 6A2 + 7A3 + 18nA2 − 3nA3 + 18n2A3

)
.

(c)
n∑

k=0

b2k+1 = − 1
27 (18A1 − 15A2 + 13A3)+

1
272

2n+2
(
18A1 + 3A2 + 10A3 + 18nA2 + 15nA3 + 18n2A3

)
.

Proof. Using (0.10) and Proposition 3, the proof can be done easily.
From the Theorem 0.17, we have the following corollary for binomial transform of

triangular numbers.

Corollary 0.18. For n ≥ 0, the following sum formulas hold.

(a)
n∑

k=0

T̂k = 2n−2n (n+ 1) .

(b)
n∑

k=0

T̂2k = 1
27

(
18× 22nn2 + 22n + 15× 22nn− 1

)
.

(c)
n∑

k=0

T̂2k+1 =
1
27

(
36× 22nn2 + 26× 22n + 66× 22nn+ 1

)
.

From the Theorem 0.17, we have the following corollary for binomial transform of
Lucas-triangular numbers.

Corollary 0.19. For n ≥ 0, the following sum formulas hold.

(a)
n∑

k=0

Ĥk = 3
(
2n+1 − 1

)
.

(b)
n∑

k=0

Ĥ2k = 22n+2 − 1.

(c)
n∑

k=0

Ĥ2k+1 = 2
(
22n+2 − 1

)
.

From the Theorem 0.17, we have the following corollary for binomial transform of
oblong numbers.

Corollary 0.20. For n ≥ 0, the following sum formulas hold.

(a)
n∑

k=0

Ôk = 2n−1n (n+ 1) .

(b)
n∑

k=0

Ô2k = 2
27

(
18× 22nn2 + 22n + 15× 22nn− 1

)
.

(c)
n∑

k=0

Ô2k+1 =
2
27

(
36× 22nn2 + 26× 22n + 66× 22nn+ 1

)
.

From the Theorem 0.17, we have the following corollary for binomial transform of
pentegonal numbers.

Corollary 0.21. For n ≥ 0, the following sum formulas hold.

14
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(a)
n∑

k=0

p̂k = 1
4

(
−5× 2nn+ 3× 2nn2 + 8× 2n − 8

)
.

(b)
n∑

k=0

p̂2k = 22n+1n2 + 22n − 22nn− 1.

(c)
n∑

k=0

p̂2k+1 = 22n+2n2 + 22n+1 + 22n+1n− 1.

0.2. Sums of Terms with Negative Subscripts

The following proposition presents some formulas for the binomial transform of gen-
eralized Guglielmo numbers with negative subscripts.

Theorem 0.22. For n ≥ 1, the following sum formulas are holds where A1, A2 and
A3 stated in the Theorem 0.8.

(a)
n∑

k=0

b−k = A1 −A2 +A3 − 2−n−2(4A1 − 4A2 + 4A3 − 2nA2 + 3nA3 + n2A3).

(b)
n∑

k=0

b−2k = 1
3A1− 4

9A2+
14
27A3− 1

272
−2n−1(18A1−24A2+28A3−18nA2+39nA3+

18n2A3).

(c)
n∑

k=0

b−2k+1 =
2
3A1− 5

9A2+
13
27A3− 1

272
−2n(18A1−15A2+13A3−18nA2+21nA3+

18n2A3).

Proof. The proof can be done easily using (0.10) and Proposition 3.
From the Theorem 0.22, we have the following corollary for binomial transform of

triangular numbers.

Corollary 0.23. For n ≥ 1, the following sum formulas hold.

(a)
n∑

k=1

T−k = −2−n−3n (n+ 1) .

(b)
n∑

k=1

T−2k == − 1
1082

−2n(21n− 4× 22n + 18n2 + 4).

(c)
n∑

k=1

T−2k+1 = − 1
542

−2n(3n+ 2× 22n + 18n2 − 2).

From the Theorem 0.22, we have the following corollary for binomial transform of
Lucas-triangular numbers.

Corollary 0.24. For n ≥ 1, the following sum formulas hold.

(a)
n∑

k=1

H−k = 3(1− 2−n).

(b)
n∑

k=1

H−2k = (1− 2−2n).

(c)
n∑

k=1

H−2k+1 = 2(1− 2−2n).

From the Theorem 0.22, we have the following corollary for binomial transform of
oblong numbers.

Corollary 0.25. For n ≥ 1, the following sum formulas hold.

15
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(a)
n∑

k=1

O−k = −2−n−2n (n+ 1) .

(b)
n∑

k=1

O−2k = − 1
542

−2n(21n− 4× 22n + 18n2 + 4).

(c)
n∑

k=1

O−2k+1 = − 1
272

−2n(3n+ 2× 22n + 18n2 − 2).

From the Theorem 0.22, we have the following corollary for binomial transform of
pentegonal numbers.

Corollary 0.26. For n ≥ 1, the following sum formulas hold.

(a)
n∑

k=1

p−k = −2−n−3(11n− 16× 2n + 3n2 + 16).

(b)
n∑

k=1

p−2k = −2−2n−2(5n− 4× 22n + 2n2 + 4).

(c)
n∑

k=1

p−2k+1 = −2−2n−1(3n− 2× 22n + 2n2 + 2).

Matrices Related with Binomial Transform of Generalized
Guglielmo Numbers

Matrix formulation of Wn can be given as




Wn+2

Wn+1

Wn


 =




r s t
1 0 0
0 1 0




n


W2

W1

W0


 . (0.14)

For matrix formulation (0.14), see [0.2].
For the binomial transforms of generalized Guglielmo numbers, we define the square

matrix A of order 3 as:

A =




6 −12 8
1 0 0
0 1 0




such that detA = 8. From (0.9) we have




bn+2

bn+1

bn


 =




6 −12 8
1 0 0
0 1 0







bn+1

bn
bn−1


 (0.15)

and from (0.14) (or using (0.15) and induction) we have




bn+2

bn+1

bn


 =




6 −12 8
1 0 0
0 1 0




n


b2
b1
b0


 .

16
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If we take bn = T̂n in (0.15) we have




T̂n+2

T̂n+1

T̂n


 =




6 −12 8
1 0 0
0 1 0







T̂n+1

T̂n

T̂n−1


 . (0.16)

For n ≥ 0, we define

Bn =




∑n+1
k=0 T̂k −12

∑n
k=0 T̂k + 8

∑n−1
k=0 T̂k 8

∑n
k=0 T̂k∑n

k=0 T̂k −12
∑n−1

k=0 T̂k + 8
∑n−2

k=0 T̂k 8
∑n−1

k=0 T̂k∑n−1
k=0 T̂k −12

∑n−2
k=0 T̂k + 8

∑n−3
k=0 T̂k 8

∑n−2
k=0 T̂k




and

Cn =




bn+1 −12bn + 8bn−1 8bn
bn −12bn−1 + 8bn−2 8bn−1

bn−1 −12bn−2 + 8bn−3 8bn−2


 .

Theorem 0.27. For all integers m,n ≥ 0, we have

(a) Bn = An.
(b) C1A

n = AnC1.
(c) Cn+m = CnBm = BmCn.

Proof.

(a) For the proof we use the mathematical induction on n.

First, if we take n = 0, the identity, (a) holds. Then, we assume that the identity
(a) holds for n = u. Let’s prove that the identity, (a) holds for n = u + 1. Hence, we
write,

Au+1 =




6 −12 8
1 0 0
0 1 0







6 −12 8
1 0 0
0 1 0




u

=




6 −12 8
1 0 0
0 1 0


Bu

=




6 −12 8
1 0 0
0 1 0







∑u+1
k=0 T̂k −12

∑u
k=0 T̂k + 8

∑u−1
k=0 T̂k 8

∑u
k=0 T̂k∑u

k=0 T̂k −12
∑u−1

k=0 T̂k + 8
∑u−2

k=0 T̂k 8
∑u−1

k=0 T̂k∑u−1
k=0 T̂k −12

∑u−2
k=0 T̂k + 8

∑u−3
k=0 T̂k 8

∑u−2
k=0 T̂k




=




∑u+1
k=0 T̂k+1 −12

∑u
k=0 T̂k+1 + 8

∑u
k=0 T̂k 8

∑u
k=0 T̂k+1∑u+1

k=0 T̂k −12
∑u

k=0 T̂k + 8
∑u−1

k=0 T̂k 8
∑u

k=0 T̂k∑u
k=0 T̂k −12

∑u−1
k=0 T̂k + 8

∑u−2
k=0 T̂k 8

∑u−1
k=0 T̂k




=




∑u+2
k=0 T̂k −12

∑u+1
k=0 T̂k + 8

∑u
k=0 T̂k 8

∑u+1
k=0 T̂k∑u+1

k=0 T̂k −12
∑u

k=0 T̂k + 8
∑u−1

k=0 T̂k 8
∑u

k=0 T̂k∑u
k=0 T̂k −12

∑u−1
k=0 T̂k + 8

∑u−2
k=0 T̂k 8

∑u−1
k=0 T̂k




= Bu+1.
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Consequently, the proof is finished by using mathematical induction on n. �

(b) Using matrix multiplication, (b) follows. �
(c) The following identity is true.

ACn−1 =




6 −12 8
1 0 0
0 1 0







bn −4bn−1 + 2bn−2 2bn−1

bn−1 −4bn−2 + 2bn−3 2bn−2

bn−2 −4bn−3 + 2bn−4 2bn−3




=




bn+1 −4bn + 2bn−1 2bn
bn −4bn−1 + 2bn−2 2bn−1

bn−1 −4bn−2 + 2bn−3 2bn−2


 = Cn.

i.e. Cn = ACn−1. If we use the induction on n and the last equation, we get
Cn = An−1C1. So that, the following identity is true.

Cn+m = An+m−1C1 = An−1AmC1 = An−1C1A
m = CnBm

and the proof of Cn+m = BmCn can be done similarly. �

Theorem 0.28. Let n,m be non negative integers, then the following identities are
true.

bn+m = bn

m+1∑
k=0

T̂k + bn−1

(
−12

m∑
k=0

T̂k + 8

m−1∑
k=0

T̂k

)
+ 8bn−2

m∑
k=0

T̂k (0.17)

= bn

m+1∑
k=0

T̂k + (−12bn−1 + 8bn−2)

m∑
k=0

T̂k + 8bn−1

m−1∑
k=0

T̂k. (0.18)

Proof. From the equation Theorem 0.27, (c), we see that an element of Cn+m is
the product of row Cn and a column Bm. So, it can be easily seen that an element of
Cn+m is the product of a row Cn and column Bm. Let (Cn+m)i,j denote the entry in
the i-th row j-th column of Cn+m and (CnBm)i,j denote the entry in the i-th row j-th
column of the product CnBm. Then, using Theorem 0.27, (c) the following identities
are true

(Cn+m)2,1 = (CnBm)2,1,

This completes the proof. �
From the last Theorem, we get the following corollary.

Corollary 0.29. For m,n ≥ 0, we have

(a) T̂n+m = T̂n
∑m+1

k=0 T̂k + T̂n−1

(
−12

∑m
k=0 T̂k + 8

∑m−1
k=0 T̂k

)
+ T̂n−2

∑m
k=0 T̂k

(b) Ĥn+m = Ĥn
∑m+1

k=0 T̂k + Ĥn−1

(
−12

∑m
k=0 T̂k + 8

∑m−1
k=0 T̂k

)
+ Ĥn−2

∑m
k=0 T̂k

(c) Ôn+m = Ôn
∑m+1

k=0 T̂k + Ôn−1

(
−12

∑m
k=0 T̂k + 8

∑m−1
k=0 T̂k

)
+ Ôn−2

∑m
k=0 T̂k

(d) p̂n+m = p̂n
∑m+1

k=0 T̂k + p̂n−1

(
−12

∑m
k=0 T̂k + 8

∑m−1
k=0 T̂k

)
+ p̂n−2

∑m
k=0 T̂k

18
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Now, we consider non-positive subscript cases. For n ≥ 0, we define

B−n =




−
∑n−2

k=0 T̂−k 12
∑n−1

k=0 T̂−k − 8
∑n

k=0 T̂−k −8
∑n−1

k=0 T̂−k

−
∑n−1

k=0 T̂−k 12
∑n

k=0 T̂−k − 8
∑n+1

k=0 T̂−k) −8
∑n

k=0 T̂−k

−
∑n

k=0 T̂−k 12
∑n+1

k=0 T̂−k − 8
∑n+2

k=0 T̂−k) −8
∑n+1

k=0 T̂−k




and

C−n =




b−n+1 −12b−n + 8b−n−1 8b−n

b−n −12b−n−1 + 8b−n−2 8b−n−1

b−n−1 −12b−n−2 + 8b−n−3 8b−n−2


 .

By convention, we assume that

−1∑
k=0

T̂−k = 0 , and

−2∑
k=0

T̂−k = 1

Theorem 0.30. For all integers m,n ≥ 0, we have

(a) B−n = A−n.
(b) C−1A

−n = A−nC−1.
(c) C−n−m = C−nB−m = B−mC−n.

Proof.

(a) Using mathematical induction on n,the proof can be done easily .
(b) Using matrix multiplication, (b) follows.
(c) The following identity is true.

AC−n−1 =




6 −12 8
1 0 0
0 1 0







b−n −12b−n−1 + 8b−n−2 8b−n−1

b−n−1 −12b−n−2 + 8b−n−3 8b−n−2

b−n−2 −12b−n−3 + 8b−n−4 8b−n−3




=




b−n+1 −12b−n + 8b−n−1 8b−n

b−n −12b−n−1 + 8b−n−2 8b−n−1

b−n−1 −12b−n−2 + 8b−n−3 8b−n−2


 = C−n,

i.e. C−n = AC−n−1. From the last equation, using induction, we obtain C−n =
A−n+1C−1. Now,

C−n−m = A−n−m+1C−1 = A−n+1A−mC−1 = A−n+1C−1A
−m = C−nB−m

and the proof of C−n−m = B−mC−n can be done similarly.�

19



20	 International Journal of Mathematics, Statistics and Operations ResearchAsian Journal of Statistics and Applications SZULGA, Jerzy

Theorem 0.31. For m,n ≥ 0, we have

b−n−m = −b−n+1

m−1∑
k=0

T−k − b−n

(
−12

m∑
k=0

T−k + 8

m+1∑
k=0

T−k

)
− 8b−n−1

m∑
k=0

T−k

= −b−n

m−2∑
k=0

T̂−k − (−12b−n−1 + 8b−n−2)

m−1∑
k=0

T̂−k − 8b−n−1

m∑
k=0

T̂−k.

Proof. From the Theorem 0.30, (c), we see that an element of C−n−m is the product
of row C−n and a column B−m. So, it can be easily seen that an element of C−n−m

is the product of a row C−n and column B−m. Let (C−n−m)i,j denote the entry in
the i-th row j-th column of C−n−m and (C−nB−m)i,j denote the entry in the i-th row
j-th column of the product C−nB−m. Then, using Theorem 0.27, (c) the following
identities are true

(C−n−m)2,1 = (C−nB−m)2,1.

This completes the proof. �

Corollary 0.32. For m,n ≥ 0, we have

(a) T̂−n−m = −T̂−n
∑m−2

k=0 T̂−k − T̂−n−1

(
−12

∑m−1
k=0 T̂−k + 8

∑m
k=0 T̂−k

)
−

8T̂−n−2
∑m−1

k=0 T̂−k.

(b) Ĥ−n−m = −Ĥ−n
∑m−2

k=0 T̂−k − Ĥ−n−1

(
−12

∑m−1
k=0 T̂−k + 8

∑m
k=0 T̂−k

)
−

8Ĥ−n−2
∑m−1

k=0 T̂−k.

(c) Ô−n−m = −Ô−n
∑m−2

k=0 T̂−k − Ô−n−1

(
−12

∑m−1
k=0 T̂−k + 8

∑m
k=0 T̂−k

)
−

8Ô−n−2
∑m−1

k=0 T̂−k.

(d) p̂−n−m = −p̂−n
∑m−2

k=0 T̂−k − p̂−n−1

(
−12

∑m−1
k=0 T̂−k + 8

∑m
k=0 T̂−k

)
−

8p̂−n−2
∑m−1

k=0 T̂−k.
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